
JOURNAL OF COMPUTATIONAL PHYSICS 84, 7689 (1989)

A VLSI Architecture for Percolation Simulation*

PETER D. HORTENSIUS,~ HOWARD C. CARD, AND ROBERT D. MCLEOD

Department of Electrical Engineering, University of Manitoba,

Winnipeg, Manitoba, Canada R3T 2N2

Received January 5, 1988; revised October 11, 1988

The basis of an efficient VLSI architecture for parallel computations involved in the simula-
tion of the percolation model is presented. This architecture provides a spatially distributed
set of pseudorandom numbers, which are required in the local non-deterministic decisions at
the various sites in the lattice, using pseudorandom number generators based upon cellular
automata. It is shown that the time-intensive task of sampling the percolation configurations
is expedited by the inherent parallelism of this approach. Furthermore, the architecture can
also be used to group occupied sites into clusters in parallel and report pertinent information
to a host computer. In this sense it acts as a hardware expert, or percolation coprocessor, on
the computer system bus. This architecture can provide computational speedup of many
orders of magnitude over conventional simulation using a serial computer. Measurements
from a prototype constructed using a custom VLSI chip implementation indicate that a
hypothetical 1OOO x 1000 square lattice could be completely updated in 50 ns. The validity of
this approach is verified by computer simulation of the behaviour of the architecture which
derived the correct critical exponents for the percolation model. 0 1989 Academic Press, Inc.

I. INTRODUCTION

In this work we will use concepts developed in [l, 21 which are based on the
recent discovery that effectively random behaviour may be derived from elementary
or primitive l-dimensional (1D) cellular automata arrays even though the local
logical rules are deterministic [3, 43.

A novel architecture for the simulation of the percolation model will be
described. Here we will make extensive use of computer simulation since the
objective of this correspondence is to show that correct results are obtained from
a computer architecture which will speed up such simulations. Subsequently, results
will be shown which are derived from the proposed architecture. Many of the
2-dimensional problems which will be discussed here have exact analytic solutions
[S] but are nevertheless employed since they are the easiest to understand and to
make quantitative comparisons with. One should also note that many percolation

*This work was supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC), the Province of Manitoba’s Strategic Research Grant Program, and the Canadian Micro-
electronics Corporation.

‘Current address: IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights,
New York 10598.

OO21-9991/89 $3.00
Copyright 0 1989 by Academic Press, Inc.
All rights ol reproduction ID any form reserved.

76

PERCOLATION SIMULATION 77

problems, when considered in a higher dimensionality than two can only be
analysed via computer simulation. Here we will examine three of the six common
critical exponents for the percolation model using solution techniques taken from
Sur [6] and Kirkpatrick [7]. The calculated critical exponents are

(i) The rate of growth of the largest cluster as a function of site probability,
derived from the scaling relation [S]

S(L) z Lila, (1)

where S(L) is the largest cluster in a lattice of size L.

(ii) The lattice size dependency of the probability that percolation has
occurred, derived from the scaling relation [9]

dP’(p, L) = Ll/v
4 ’

(2)

where P’(p, L) is the probability that percolation has occurred in a lattice of size L.

(iii) The percentage of sites in the largest cluster as a function of p, derived
from the relation [lo]

R(p L)- L-B’“X, 3

where

R(P, L) =
number of sites in largest cluster

number of sites in the sample

(3)

(4)

and X, is an appropriate scaling function of L”‘(p-p,)/p,.

Other common quantities in the percolation model for which critical exponents
are often calculated are site correlation or spanning length (the maximum separa-
tion of two sites in a cluster), pair connectedness (the probability that two sites
separated by a given distance are members of the same cluster), and the conduc-
tivity (the conductance across a corresponding random resistor network). Here we
have not considered these other quantities, but the three quantities which we do
study are representative of the calculations which must be carried out in order to
study the percolation model. It is not expected that any uncalculated critical
exponent will deviate further from its known or expected value than those critical
exponents which are calculated in this work.

II. PERCOLATION ARCHITECTURE

The computational work in any percolation simulation on a typical serial com-
puter consists of the actual generation of the percolation lattice with site probability

78 HORTENSIUS, CARD, AND MCLEOD

p and the calculation of the appropriate quantity of interest. The architecture which
we consider here will be oriented towards the simple 2-dimensional square lattice.
Other lattice types and dimensions can be simulated using the same architectural
technique with an approrpriately modified interconnection scheme. To simulate
percolation on a lattice we must generate an independent pseudorandom number
for each site, compare it with a given probability p, and occupy the site accordingly.
This operation is repeated over the entire N= L2 sites of the square lattice. There-
fore, we require at least O(N) time to generate a single copy of the lattice using a
serial computer. For the three critical exponents above we must calculate the
probability of percolation and the size of the largest cluster at any probability p. To
calculate whether the lattice has a percolating cluster and the size of the largest
cluster requires no more than 0(N2) time using the Hoshen and Kopelman cluster
labelling algorithm [111.

An obvious question to ask is which aspects of the percolation model simulation
can be accomplished in parallel. While some portions of the algorithm which can
be parallelised are fairly obvious’ the best method to implement such a parallel
computer is not. We note that the larger the lattice which can be simulated the
greater the interest in the simulation. The largest simulation which has presently
been carried out used a 160,000 x 160,000 square lattice [121.

The remaining problem is the calculation of the critical exponents. It is possible
to build a special computer which can both simulate the system and calculate the
critical exponents for the percolation model. However, this is not necessarily the
most expedient solution. The disadvantages of such an approach stem from the fact
that the actual calculation of the critical exponents requires data memory and
floating point calculations. However, it is well understood by anyone who has
attempted to simulate the percolation model that very little time is actually spent
calculating the desired exponents. Most of the computer time is used in generating
new lattice configurations and grouping the occupied sites into clusters. Further-
more, operations using the clusters are generally very rapid given that site
clustering has already occurred. Therefore, little is to be gained by building a
computer dedicated solely to the calculation of critical exponents. Much can,
however, be gained by building a device which can generate new lattices and form
clusters quickly. This device would act as a special purpose coprecessor to a general
purpose host computer and because of the nature of its specialised task could be
made to operate very efficiently. Therefore, we will consider an implementation
where a host computer will determine the actual critical exponents and do
operations on clusters generated by a special purpose percolation coprocessor.

In order to efficiently execute the percolation simulation the architecture of Fig. 1
is proposed. Each processor consists simply of a pseudorandom number generator
(PRNG), comparator, and storage element, or site latch. The site probability, p, is
made available to each comparator over a global bus and the pseudorandom
number from the PRNG is compared to it. Finally, the site latch is turned high

1 Occupying sites based on the site probability.

PERCOLATION SIMULATION 79

FIG. 1. Basic percolation simulation architecture.

(>p) or low (<p) accordingly. Each site in the lattice is assigned a unique
processor. Therefore, after each clock cycle we have defined a new percolation
lattice, as compared to at least O(N) time for a serial updating technique. In
addition, the time for a single clock cycle is quite small (6 50ns). Each simulation
step on a typical serial computer with a software PRNG is comparatively large
(> 5~s) for a single site. In addition of course, to update the entire lattice the serial
method must be applied N times; the present approach only once. The overall speed
improvement is approximately lOON. It should be noted that the size of the lattice
which can be simulated is restricted by the number of processing sites available
which is in turn dependent in an inverse way on the size of each processor.

The heart of any nondeterministic computation is the pseudorandom number
generator. For simulations such as those discussed here it is known that a non-
random PRNG will result in erroneous simulation results. Thus, it is critical that
the PRNG used be of high quality. However, at the same time we are restricted to
using only a small area for the PRNG since we are targeting a VLSI implementa-
tion. It has been shown that conventional algorithmic PRNG techniques such as
the multiplicative congruential and additive feedback generators are not suitable for
an architecture such as that described here because of silicon area and processing
time considerations [11. In addition, typical hardware techniques such as those
based on shift registers are also unsuitable due to poor quality randomness or
excessive area and time. In [1,2] a hardware PRNG based upon cellular automata

581/84/l-6

80 HORTENSIUS, CARD, AND MCLEOD

(CA) is developed and is shown to possess more desirable implementation
properties (small area, local communication) and/or randomness than conventional
PRNG techniques. However, the architecture is not PRNG dependent and another
PRNG technique may be substituted if desired.

A cellular automaton evolves in discrete steps with the next value of one site
determined by its previous value and that of a set of sites called the neighbour sites.
The extent of the neighbourhood can vary depending, among other factors, upon
the dimensionality of the cellular automaton under consideration. In a simple
l-dimensional cellular automaton, the next value at a site depends only on its pre-
sent value and the values of the left and right neighbours. The cellular automaton
may posses null boundary conditions (i.e., the first and last sites consider their
missing neighbour site to always have a zero value) or be cyclically connected (i.e.,
one considers the cellular automaton to form a ring thereby making the first and
last sites neighbours). Here only binary l-dimensional cellular automata with two
neighbour sites (left and right) will be considered, but it is possible to use any
desired modulus, dimension, or neighbour set. For binary cellular automata of this
type each site must determine its next value on the basis of the eight possible
present values of itself, and the left and right neighbours (i.e., 000, 001, 010, etc.).
The truth table for the next state values corresponding to each possible input form
a binary number the decimal equivalent of which is referred to as the rule number
under the classification scheme of Wolfram [13].

While the description of l-dimensional cellular automata is very simple, the
different CA rules are capable of a very wide range of global behaviour. Wolfram
has characterised four basic classes of behaviour in l-dimensional cellular automata
[14]. Class 1 automata evolve to homogeneous final global states, class 2 to
periodic structures, class 3 exhibit chaotic behaviour, and class 4 yield complicated
localised and propagating structures. For pseudorandom number generation it has
been shown that several class 3 CA rules produce high quality pseudorandom
number sequences [1, 2,4]. In the present paper we employ the CA rule based
PRNG discussed in [1, 2). It should be noted that, as with all PRNGs, some
correlation in the number sequence is present [15]. But it is unclear whether the
particular correlations present in CA-based PRNGs will affect the results of a
percolation simulation. Again, we emphasize the PRNG technique independence of
the architecture.

The regularity of processing sites in such a percolation processor makes it an

FIG. 2. CMOS layout of 16 bit percolation site processor.

PERCOLATION SIMULATION 81

FIG. 3. Architecture to group occupied sites into clusters.

ideal candidate for VLSI implementation. The size of such a processor is directly
dependent on register size. However, we can make estimates based on a fixed
register size and scale up or down as appropriate for different register sizes. A 16-bit
site processor layout is pictured in Fig. 2. The size of this processor using a 3pm
single metal CMOS technology is 0.838 mm*. Therefore it is possible to have 25
such processors simulating a 5 x 5 lattice on a single 4.8 x 4.8 mm die.* It is
straightforward to implement the site processors in such a way as to be able to
combine chips to form larger lattices. However, it is not realistic to consider
employing a unique processor for each site in the lattice for lattices of arbitrary size.
Therefore, we will restrict ourselves to lattices of L d 1000 for which we assume
there is a unique processor for each site in the lattice. We will return to the problem
of lattices larger than 1000 x 1000.

It is possible to use the proposed percolation architecture solely to dramatically
increase the speed of updating the lattice. However, if we could calculate the size
of the clusters and other relevant properties we could accelerate the simulation even

* This technology (3 pm CMOS) available to us at present is not the state of the art. Implementation
using more advanced technology would dramatically increase the number of site processors per chip. For
example, on a triple metal lym technology using a 10 x 10 mm die one could easily place over 1000 site
processors.

82 HORTENSIUS, CARD, AND MCLEOD

more dramatically. It is possible to quickly group the occupied sites of the lattice
into clusters if we superimpose the multiprocessor architecture of Fig. 3 onto the
architecture of Fig. 1. Here we assign each processor a unique cluster number
corresponding to its location in the lattice. For example, in Fig. 3 we have assigned
processors in the first row to have values 0 to L - 1, the second row processors are
assigned numbers L to 2L - 1, and so on. This percolation computer operates as
follows. First we utilise the underlying architecture of Fig. 1 to decide which sites
are occupied. Occupied sites take their assigned cluster value while unoccupied sites
take on the value of co, or some other appropriately large number. We then
proceed to synchronously update all sites according to the following algorithm. If
a site is occupied, the next cluster value is selected as the lowest of its four
neighbouring cluster values (remember we are presently considering only square
2-dimensional lattices) and itself. For example, in Fig. 4a we see an 8 x 8 lattice with
p = 0.5313, Fig. 4b shows the same lattice initialised using the above cluster
numbering assignment, and in Fig. 4c we see the cluster numbers one synchronous
update later. The synchronous updating procedure continues to take place until all
sites belonging to the same cluster have had their cluster numbers merged together.
The worst case time for this procedure would be L(L - 1)/2. The final cluster
numbering configuration for Fig. 4a is shown in Fig. 4d.

. . l l l 2 3 4 . . .

l l l . l 11 13 14 15

l l l . . l . . . 18 19. 21 . 23

. l l . . . l . 24. 26. . 29. 31

l l l l l . l 32. 34 35 36 31 39

l l . 9. ’ . l 40. 42 43 . . 46 41

l l l l 48 49 51 . . 54

l l l ’ 56 57 58 . . . 62 .

2 2 3 2 2 2 . . .

. 3 . 13 13 14 . . . 2 2 2 2

18 11 . 13 15 . 2 2 2 . 2

24 18 . 21 . 23 24 2 . 2 2

24 26 34 35 29 . 3124 . 2 2 2 2 . 2

32 34 35 . 46 39 24 , 2 2 . . 2 2

40 48 43 . . 46 . 24 24 , 2 . 2 .

48 49 51 . . . 54 242424...2.

w 63

FIG. 4. Operation of percolation computer on an 8 x 8 square lattice: (a) 8 x 8 square lattice with
p = 0.5313; (b) initial&d lattice with cluster number assignment; (c) cluster numbers after one update;
(d) final cluster numbering assignment.

PERCOLATION SIMULATION 83

Cluster Number Register

FIG. 5. Architecture to group sites into clusters for row at a time lattice generation.

Determining whether or not the largest cluster is infinite is quite easy if we realise
that a spanning cluster must be present both at the top and bottom of the lattice.
Therefore, if any sites on the bottom of the lattice have a final cluster number less
than L then we have a spanning cluster. Therefore, for a 1000 x 1000 lattice we can
group the occupied sites into clusters and determine if a spanning cluster exists in
at most 500,000 update steps (Fig. 5). A small prototype has been constructed using
a 3pm single metal CMOS technology and measurements of the circuit have shown
the operating speed to be at least 20 MHz. In order to simulate large lattices it is
necessary to construct the percolation coprocessor using many chips (Fig. 6).

..222...

. . . 2 . 13 13 13

. . 2 2 . 13 . 13

u . 2 . . 13 . 13

24 . 2 2 2 . . 13

24 . 2 2 . . 13 13

24 24 . 2 . . 13 .

24 24 24 . . . 13

Cd)

FIG. 6. Operation of row at a time percolation computer on lattice of Fig. 4; (a) initialised second
row; (b) second row after cluster-numbering completed; (c) fifth row after cluster-numbering completed;
(d) fully cluster-numbered lattice.

84 HORTENSIUS, CARD, AND MCLEOD

Therefore, the simulation speed may be limited by the rate at which interchip com-
munication can be accomplished. It is not unreasonable to consider a board level
switching rate of 50 ns, so for the purposes of this work we will consider this to be
the maximum clock speed of the current architecture even though the advanced
VLSI technologies which will be required for a final version of this architecture will
allow the internal clock rate on the chip to be much greater. Thus, in about 25 ms
we can generate a 1000 x 1000 lattice, group the occupied sites into clusters, and
determine if a spanning cluster is present.

To determine the size of the largest cluster is a much more difficult problem.
However, it is possible for the host computer to offload the final cluster numbers
from the percolation computer and count the number of sites in each cluster. This
remains a significant enhancement over serial computer simulation techniques since
much of the time is spent grouping occupied sites into clusters. Other calculations
for quantities such as pair connectedness and site correlation are also significantly
faster since the clusters have already been formed. Finally, we note that is also
possible to place processing elements which can perform cluster sizing calculations
into the architecture. However, such processing elements are considerably more
complex, especially since they require data memory, so they are not considered in
this work.

III. SIMULATION RESULTS FOR THE PERCOLATION COMPUTER

Simulations of the percolation computer with cellular automata-based PRNGs
were carried out and yielded the following results for the exponents defined

FIG. 7. Size of S(L) at p, versus L using the percolation computer.

PERCOLATION SIMULATION 8.5

FIG. 8. Log-log plot of dP’(p, L)/dp vs L using the percolation computer.

previously in Eqs. (1) to (4). The percolation threshold was found to be
0.5915 f 0.0023. The rate of increase of the largest cluster S(L) vs lattice size is
shown in Fig. 7 from which we calculate l/a to be 1.800 f 0.096. A plot of
dP’(p, L)/dp, where P(p, L) is the probability the percolation has occured on a
lattice of size L is shown in Fig. 8, yielding the value of the critical exponent v to
be 1.434 f0.030. Likewise for R(p, L), the percentage of occupied sites in the
largest cluster, we observe the behavior of Fig. 9 from which we derive a value of

FIG. 9. R(p, L) versus p for various lattice sizes using percolation computer.

86 HORTENSIUS, CARD, AND MCLEOD

TABLE I

Percolation Critical Exponents

Exponent Standard Present work Others Reference

PC 0.5916 + 0.0022 0.5915 f 0.0023 0.5928 Csl
l/a 1.798 + 0.093 1.800 + 0.096 1.89 181

; 0.144 1.439 + 0.015 0.145 1.434 * 0.030 0.14 1.35 Cl61 1161

Note. Standard refers to standard serial computer percolation simulations done for this work;
Present work refers to simulation results for the present percolation computer; Others refers to
representative results which have been reported elsewhere.

fi of 0.145. These results are summarized in Table I. There is a small discrepancy
between the results which have been calculated here and those which have been
published elsewhere [8, 161. However, there is close agreement between the results
for the percolation computer and a standard percolation simulation based on algo-
rithmic PRNG using a serial computer. Therefore, we can conclude that the
proposed parallel percolation computer yields similar critical exponents to normal
serial percolation simulation. The discrepancies between the critical exponents
calculated here and those published elsewhere may be due to several factors such
as smaller register size (here 16-bit was used) and a smaller number of samples.
However, it is encouraging that percolation simulations using the proposed
percolation computer and a standard serial computer method yielded the same
results.

It would be much more expensive in terms of both area and time to use any
PRNG other than the CA-based schemes employed in this approach. In addition,
one can see that, because of the vast number of PRNGs required, the topological
regularity of the CA approach provides a very clear advantage. Finally we note that
it has been found that standard LFSR-based and some multiplicative congruential
PRNGs are inadequate for Monte Carlo simulations [17] since they do not
produce correct critical exponents. We observe that the critical exponents
calculated using the CA-based percolation computer provided approximately
correct values.

IV. USING RENORMALISATION ON THE PERCOLATION COMPUTER

Extensions to the percolation architecture could include the use of renormalisa-
tion group principles [183 to extrapolate the infinite lattice critical exponents. The
basic concepts required to implement renormalisation as applied to percolation are
quite straightforward. Essentially we slowly integrate out small scale fluctuations
and obtain information on successively larger and larger scales. This is done by
replacing a small block of sites on the lattice with one site representing gross, or

PERCOLATION SIMULATION 87

average, behaviour. For example, in majority rule renormalisation, a block of 3 x 3
sites is represented by one occupied site if the majority of sites are occupied and an
unoccupied site if the majority of sites are not occupied. This procedure is repeated
many times progressively reducing the lattice size by a factor of I for each renor-
malisation, where 1 is the size of the block of sites being replaced by a single site.
The result is that for p > 0.5 the new pl, representing the density on the renor-
malised lattice, moves quickly towards a value of 1.0, while for p c 0.5 the new p1
moves towards 0.0. However, for p = 0.5 the new p, will also equal 0.5. This critical
value of p = 0.5 derives simply from the majority renormalisation rule and is not
associated with the critical percolation value. The critical exponents are extracted
from the rate at which the value of p1 moves towards 1.0 or 0.0. The problem here
is that for many lattices simple majority rule renormalisation is not adequate to
extrapolate infinite lattice behaviour. In the above example we saw that for p > 0.5
the value of p1 moved quickly towards 1.0. Thus, for p = pc = 0.5928 on the square
lattice p1 will move towards 1.0 and it is not possible to extract critical behaviour
since p1 is not equal to pc. Therefore, another renormalisation rule is required if we
are to study critical behaviour for site percolation on a square lattice using renor-
malisation techniques. For example, [193 studied renormalisation on a square
lattice by replacing a block of sites with an occupied site only if a spanning cluster,

FIG. 10. Renormalisation architecture operating on 2 x 2 blocks using a renormalisation rule due
to [18].

88 HORTENSIUS, CARD, AND MCLEOD

or connecting path, existed in the block. Reynolds [20, 91 utilised a position-space
renormalisation procedure whereby a block of 2d sites was replaced by a single site
and d bonds, requiring that the d bonds reflect the connectivity of the block which
it is replacing.

In any case we see that construction of hardware to implement any renormalisa-
tion procedure, other than the simple majority rule case, requires significant
processor resources. An example of a simple renormalisation group architecture is
shown in Fig. 10. Here we implement the renormalisation rule of [19]. For
simplicity we use a block size of 2 x 2. To determine whether an infinite cluster
exists in a 2 x 2 block merely requires checking if each row has an dccupied site. A
renormalised site representing sites (x, y), (x + 1, y), (x + 1, y + l), and (x, y + 1) in
the old lattice will be stored in position (x/2, y/2) in the new L/2x L/2 lattice,
necessitating a shift to the left and up by x/2 and y/2 site processors. This will
require additional shifting hardware at each site processor. Finally, we assign
cluster numbers to each occupied site in the new lattice and invoke the site
clustering process. As larger blocks or more complicated renormalisation rules are
considered the associated computing hardware becomes considerably more
complex. Thus, a percolation computer implementing renormalisation will not be
further considered in this work. However, we note that if a percolation computer
is to be constructed which itself calculates the critical exponents, it is probably best
to use a renormalisation approach to quickly reduce the amount of cluster data
which must be processed and offloaded to the host computer.

Another extension to the percolation computer is the inclusion of different
lattices and dimensions other than the 2-dimensional square lattice which we
considered here. To include other lattice types, for example, the triangular or
honeycomb lattices, one need merely increase the connectivity of the site processors
to account for the increased number of neighbours. Otherwise the method of opera-
tion is precisely the same. Similarly for higher dimensions one need merely increase
the neighbour connections at each site processor to account for the increased
neighbour set. Admittedly for d > 2 longer physical distances between neighbouring
processors will occur due to the increased connectivity, but the method of
implementation and operation remains the same. For the processors under
consideration here the distance between processors is not the dominant factor
relating to operating speed. Rather, actual processing time dominates. No simula-
tions were performed on percolation operating on different lattice types or higher
dimensions since it is not expected that the validity of the percolation computer will
be affected by having more neighbours. Neither do we expect the computer time for
simulations on the percolation computer to increase dramatically as the neighbour
set increases.

V. CONCLUSIONS

In this correspondence we have shown that VLSI is an appropriate medium for
specialised hardware with which to simulate the percolation model. Speedup of

PERCOLATION SIMULATION 89

several orders of magnitude has been accomplished. Due to an efficient PRNG and
clustering algorithm we can exploit high speeds and minimal clock cycles. Having
correct critical exponents justifies the cellular automata-based PRNG, since near
the phase transition, correlations in the pseudorandom number sequence will
adversely affect the results.

REFERENCES

1. P. D. HORTENSILJS, Ph.D. dissertation, University of Manitoba, Winnipeg, Canada, 1987
(unpublished).

2. P. D. HORTENSIUS, H. C. CARD, AND R. D. MCLEOD, IEEE Trans. Comput., in press.
3. S. WOLFRAM, D. A. LIND, M. S. WATERMAN, P. GRASSBERGER, AND S. J. WILLSON, in Cellular

Automata, Proceedings of an Interdisciplinary Workshop (North-Holland, Amsterdam, 10s Alamos,
NM, 1984).

4. S. WOLFRAM, Adv. Appl. Math. I, 127 (1986).
5. J. W. ESSAM, D. S. GAUNT, AND A. J. GUTTMANN, J. Phys. A 11, 1983 (1978).
6. A. SUR, J. L. LEBOWITZ, J. MARRO, M. H. KALOS, AND S. KIRKPATRICK, J. Stat. Phys. 15, No. 5, 345

(1976).
7. S. KIRKPATRICK, “Models of Disordered Materials,” in Ill Condensed Matter, edited by R. Balian,

R. Maynard, and G. Toulouse (World Scientific, Singapore, 1983), p. 323.
8. D. STAUFFER, Inrroducfion to Percolation Theory (Taylor & Francis, Philadelphia, 1985).
9. P. J. REYNOLDS, H. E. STANLEY, AND W. KLEIN, J. Phys. A 11, No. 8, L199 (1978).

10. M. E. FISHER, in Critical Phenomena, Proceedings of the International School of Physics, “Enrico

Fermi Course 51,” edited by M. S. Green (Academic Press, New York, 1971), p. 73.
11. J. HOSHEN AND R. KOPELMAN, Phys. Rev. 14, 3428 (1976).
12. D. C. RAPAPORT, J. Phys. A 18, L175 (1985).
13. S. WOLFRAM, Rev. Mod. Phys. 55, 601 (1983).
14. S. WOLFRAM, Physica D 10, 1 (1984).
15. A. COMPAGNER AND A. HOOGLAND, J. Comput. Phys. 71, 391 (1987).
16. R. ZALLEN, The Physics of Amorphous Solids (Wiley, New York, 1983).
17. G. PARISI AND F. RAPUANO, Phys. Letf. B 157, No. 4, 301 (1985).
18. K. G. WILSON, Rev. Mod. Phys. 47, 765 (1975).
19. S. KIRKPATRICK, Phys. Rev. B 15, 1533 (1977).
20. P. J. REYNOLDS, H. E. STANLEY, AND W. KLEIN, J. Phys. C 10, L167 (1977).

